A
N

Variable Polyadicity Without Events:
A Type-Theoretic Analysis of Event Semantics”

Zhaohui Luo [& a1] Yunbao Shi [Fiz=]
Royal Holloway, U of London West Anhui University

* Work based on a paper of the above title in 2025.

AN

N

Theme (of this talk)

+»» Variable Polyadicity (VP) [t o nf2s]
» Key problem solved by Davidsonian event semantics
+ Seemingly unresolvable in set theory/traditional logic

*** VP problem is solvable in type theory!

+ Why? [Part I]
+ How? [Part II]

+»» Our paper: analysis of event semantics in general
(omitted in this talk)

Logics in China, 2025

Event semantics and the VP problem

N

L

** Event semantics [Davidson 1967, Parsons 1990]

» Popular approach to formal semantics

» set-theoretic (simple type theory as intermediate)
*» Variable Polyadicity (VP) [t 7t % m sk]

» Example (1-2) & problematic “semantics” (3-4):

(1) John buttered the toast. (3) butter(j,toast)
(2) John buttered the toast with the knife in the Kitchen. (4) butter(y, toast, with_knife.in_kitchen)

. butter’s arity is not fixed!? =» Does it exist? = No = VP prob!
» Davidson: VP resolved (indirectly) by event v (entity for action)!

(5) 3Jw. butter(y, toast, v)
(6) dJv. butter(j,toast,v) N with_knife(v) A in_kitchen(v)

» Problems: ontological commitment of events (cf, Quine 1969)
» Q: can we solve VP without events? A: yes, in type theory.

Logics in China, 2025 3

Type-Theoretical Analysis (I) — Background

N

** Modern Type Theories (MTTs)
+ Martin-Lof introduced dependent types etc.
¢ Logic(s) in type theory
+ Curry-Howard principle of propositions-as-types
+ Example logics: PaT (MLTT), Prop (UTT), h-logic (HOTT)
+»» Relationship between logic and set/type theory

Logic (e.g. FOL) Type Theory
set theory logic (Prop or
O O PaT or
h-logic)
Figure 1: Set theory — a theory in a logic Figure 2: Logic is a part of type theory

*» Type-theoretical mechanisms to manipulate logical expressions.

R

» S0, type theory provides a setting for a natural solution to VP!

Logics in China, 2025

Type-Theoretical Analysis (II) — Solution to VP

N

** Recall the VP problem:
(3) butter(j,toast)
(4) butter(j,toast, with_knife,in_kitchen)
Can we have such a “butter”? (Not in traditional logics — VP.)
*» In type theory, the answer is yes.

butter : IIn : N. TV-ADV(n) Putter(0) : TV-ADV(0) = e —e—t
butter(1) : TV-ADV(1) e—~e—ADV = ¢t

butter(2) : TV-ADV(2) = e —we — ADV — ADV — t

¢ In type theory, we consider
. II-types: allowing us to type butter as VP requires.
= N (type of nats): allowing us to define “butter” and TV-ADV(n) inductively.
» Part II for details.

Logics in China, 2025 5

N

What does all this mean?

L

*** Are events necessary? [newly introduced entities for actions]
» VP has satisfactory solution =» dependent typing
- Other benefits (eg, event talks/perceptual verbs) — doable alternatively

“* What does all this mean?
- Events or dependent typing? [What if Davidson had known dep typing?]

» MTTs as foundational languages — MTT-semantics
< A. Ranta. Type-Theoretical Gramma. 1994.
< S. Chatzikyriakidis & Z. Luo. Formal Semantics in MTTs. Wiley/ISTE, 2020.
< B, AR R RS NH G RF M, 20244
- One may insist on events — MTT-event semantics
< Dependent event types (Luo & Soloviev 2017)
< Future work on this?

Logics in China, 2025 6

N

This page intentionally left blank

Logics in China, 2025

Two type constructors in type theory rrauwe roarsue

I' = 112:A.B type

N

L/
: ' »AFb:B
*+» Dependent function types (I-types) T ArAb A B
» [N-types are typical dependent types. A
< Example: for a function [wArb:B Tha:A
g.: HX:Human,Parent(X), ' (Ax:Ab)(a) = [a/x]b: [a/x]B

For any h : Human, g(h) : Parent(h), i.e., g(h) must be h’s father/mother.
** Type N of nat numbers allowing inductive definitions:
En(z, f,0) = =«
Notes: En(x, f,suce(n)) = f(n,En(z, fin))

» This allows manipulations of logical expressions (logic is internal
and “usual” meta-level entities can be manipulated in type theory.)

» This allows inductive definitions of types, eg, TV-ADV next page.
(Large elimination or universe — technicality omitted.)

Logics in China, 2025 8

Definition of TV-ADV and butter

N

“» TV-ADV(n) — dependent type of transitive verbs with n adverbial
modifiers, with ADV = (e - t) — (e — b):
% TV-ADV(0) =e —-e—t
< TV-ADV(1)=e —>e — ADV — t
% TV-ADV(2) =e — e — ADV — ADV — t

’:’ Example: bUtter butter(0) : TV-ADV(0) = e e — t
s butter : Nn : N. TV_ADV(n) butter(1) : TV-ADV(1l) = e e = ADV = t
o butter(O) —BUTTER : e — e —» t butter(?) : TV-ADV(2) = e —we =+ ADV — ADV — ¢
% butter(n + 1,x,y,adv,,,) = butter(n, x, y,adv,) A adv,,(BUTTER(x), Y)

Logics in China, 2025 9

Example (VP-form and Conjunctive form)

| John buttered the toast.

John buttered the toast with the knife in the kitchen.

butter(0, j, toast)

butter(2, j, toast, with_knife, in_kitchen)

BUTTER(], toast)

BUTTER(j, toast) A with_knife(BUTTER(]), toast) A in_kitchen(BUTTER(j), toast)

*» This (VP-form) is definitionally equal to the conjunctive form.

Summary of benefits

*» Solving VP problem (the VP-form)

*» Inference as expected:
* butter(n + 1, ...) = butter(n, ...)

For example: butter(1, j, toast, with_knife) = butter (0, j, toast)

“* Another example——Commutativity of adverbial modifiers by conjunctive form:

butter(2, j, toast, with_knife, in_kitchen) < butter(2, j, toast, in_kitchen, with_knife)

Logics in China, 2025

10

N

Alternatives to some ES benefited phenomena

L

** Phenomena: event talks, perceptual verbs
“»» Perceptual verbs (see/hear) with tenseless verbs (leave) in clauses:
Mary saw John leave.
» If leave : e — t, then see(m, leave(j)) would be ill-typed.
. In event semantics, “see” is applied to an event-like entity:
3v. see(v) A ag(v)=m A 3Vv’. leave(v’) A ag(v’)=j A pt(v) = Vv’

» Do we have to have events?

*» Alternatively, we can have that, in such a case,

leave : e — e (i.e., it produces an event-like entity!)
= Then, see(m, leave(j)) is perfectly well-typed! (Natural solution, we believe.)

*»» If clauses have adverbial modifications, slightly more sophisticated:

®,

* Mary saw John leave quickly [meaning postulate; details omitted].

Logics in China, 2025 11

Proofs in Rocq/Coq (proof assistant in type theory)

N

L

R/

Coq, Lean, Isabelle, and Agda.

(* Basic imports ¥*)

Require Import Coqg.Init.Datatypes.

(* e and t *)

Parameter e : Set.

(* t = Prop as in shallow embedding for simplicity *)
Definition t := Prop.

(* Type of adverbial modifiers *)

Definition ADV := (e -> t) -> (e —> t).

(* Basic semantics of butter without adverbial modification %)
Parameter BUTTER e > e —-> t.

(* Dependent type of transitive verbs with n adverbial modifiers *)

Fixpoint TV ADV (n : nat) : Type :=

match n with

| 0 =>1t

| S m => ADV —> TV_ADV m

end.

(* "Extended conjunction" -- a helper function

*)

(* AND a b : TV ADV n, where a : TV ADV n and b : t *)
Fixpoint AND (n : nat) : TV ADV n —-> t -> TV ADV n :=

match n with

| 0 => fun (a : TV ADV 0) (b : t) => and a b

| Sm => fun a b => fun adv => AND m (a adv) b
end.

(* Inductive definition of butter with base case BUTTER *)
Fixpoint butter (n : nat) (x y : e) : TV_ADV n :=
match n with

| 0 => BUTTER x y

| S m => fun (adv : ADV) =>

AND m (butter m x y) (adv (BUTTER x) y)

end.

(* "Extended implication" -- a helper function *)
(* IMPLIES n a b : Type with a, b : TV ADV n

+ Logics in China, 2025

“» A proof assistant is an interactive system for constructing and checking formal proofs, such as

“» This Coq code models transitive verbs with adverbial modifiers and proves that removing an
adverb preserves expected semantic entailment.

Inductive IMPLIES :
| implies zero :
forall (a b : TV_ADV 0),
| implies succ :

forall n (a b : TV ADV (S n)),
(forall adv : ADV, IMPLIES n (a adwv)
IMPLIES (S n) a b.

(*

Lemma: AND always entails its first conjunct. *)

Lemma AND implies first :

forall n (X : TV_ADV n) (B : t),

IMPLIES n (AND n X B) X.

Proof.

induction n.

- intros X B. simpl. apply implies zero. intros [H]. exact H.
- intros X B. simpl. apply implies succ. intros adv. apply IHn.
Qed.

(* Theorem: dropping an adverbial argument preserves entailment.
Theorem butter Sn implies butter n :

forall n, TV ADV n —-> TV ADV n -> Type :=

(a => b) -> IMPLIES 0 a b

(b adv)) —->

forall (n : nat) (adv : ADV) (x y : €),
IMPLIES n ((butter (S n) x y) adv) (butter n x y).
Proof.

intros n adv x y.
apply AND implies first.
Qed.

Ready

12

